Source code for gaggle.base_nns.resnet_x

'''
Properly implemented ResNet-s for CIFAR10 as described in paper [1].
The implementation and structure of this file is hugely influenced by [2]
which is implemented for ImageNet and doesn't have option A for identity.
Moreover, most of the implementations on the web is copy-paste from
torchvision's resnet and has wrong number of params.
Proper ResNet-s for CIFAR10 (for fair comparision and etc.) has following
number of layers and parameters:
name      | layers | params
ResNet20  |    20  | 0.27M
ResNet32  |    32  | 0.46M
ResNet44  |    44  | 0.66M
ResNet56  |    56  | 0.85M
ResNet110 |   110  |  1.7M
ResNet1202|  1202  | 19.4m
which this implementation indeed has.
Reference:
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
    Deep Residual Learning for Image Recognition. arXiv:1512.03385
[2] https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py
If you use this implementation in you work, please don't forget to mention the
author, Yerlan Idelbayev.
'''

import torch.nn as nn
import torch.nn.functional as F


__all__ = ['ResNet', 'resnet20', 'resnet32', 'resnet44', 'resnet56', 'resnet110', 'resnet1202']


class LambdaLayer(nn.Module):
    def __init__(self, lambd):
        super(LambdaLayer, self).__init__()
        self.lambd = lambd

    def forward(self, x):
        return self.lambd(x)


class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self, in_planes, planes, stride=1, option='B'):
        super(BasicBlock, self).__init__()
        self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)
        self.relu = nn.ReLU()

        self.shortcut = nn.Sequential()
        if stride != 1 or in_planes != planes:
            if option == 'A':
                """
                For CIFAR10 ResNet paper uses option A.
                """
                self.shortcut = LambdaLayer(lambda x:
                                            F.pad(x[:, :, ::2, ::2], (0, 0, 0, 0, planes//4, planes//4), "constant", 0))
            elif option == 'B':
                self.shortcut = nn.Sequential(
                     nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False),
                     nn.BatchNorm2d(self.expansion * planes)
                )

    def forward(self, x):
        out = self.relu(self.bn1(self.conv1(x)))
        out = self.bn2(self.conv2(out))
        out += self.shortcut(x)
        out = self.relu(out)
        return out


[docs]class ResNet(nn.Module): def __init__(self, block, num_blocks, num_classes=10): super(ResNet, self).__init__() self.in_planes = 16 self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(16) self.layer1 = self._make_layer(block, 16, num_blocks[0], stride=1) self.layer2 = self._make_layer(block, 32, num_blocks[1], stride=2) self.layer3 = self._make_layer(block, 64, num_blocks[2], stride=2) self.linear = nn.Linear(64, num_classes) self.relu = nn.ReLU() self.avgpool2d = nn.AdaptiveAvgPool2d((1, 1)) def _make_layer(self, block, planes, num_blocks, stride): strides = [stride] + [1]*(num_blocks-1) layers = [] for stride in strides: layers.append(block(self.in_planes, planes, stride)) self.in_planes = planes * block.expansion return nn.Sequential(*layers)
[docs] def forward(self, x): out = self.relu(self.bn1(self.conv1(x))) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = F.avg_pool2d(out, out.size()[3]) out = out.view(out.size(0), -1) out = self.linear(out) return out
[docs]def resnet20(num_classes: int = 10): return ResNet(BasicBlock, [3, 3, 3], num_classes=num_classes)
[docs]def resnet32(num_classes: int = 10): return ResNet(BasicBlock, [5, 5, 5], num_classes=num_classes)
[docs]def resnet44(num_classes: int = 10): return ResNet(BasicBlock, [7, 7, 7], num_classes=num_classes)
[docs]def resnet56(num_classes: int = 10): return ResNet(BasicBlock, [9, 9, 9], num_classes=num_classes)
[docs]def resnet110(num_classes: int = 10): return ResNet(BasicBlock, [18, 18, 18], num_classes=num_classes)
[docs]def resnet1202(num_classes: int = 10): return ResNet(BasicBlock, [200, 200, 200], num_classes=num_classes)