Source code for gaggle.base_nns.snet

import torch.nn as nn

__all__ = ["SNetCIFAR", "SNetMNIST"]


[docs]class SNetCIFAR(nn.Module): """ Small custom convolutional cifar model. Has ~149K parameters. """ def __init__(self, num_classes: int = 10): super().__init__() self.conv1 = nn.Conv2d(3, 32, 5, stride=2) self.bn1 = nn.BatchNorm2d(32) self.conv2 = nn.Conv2d(32, 128, 5, stride=2) self.bn2 = nn.BatchNorm2d(128) self.relu = nn.ReLU() self.avgpool2d = nn.AdaptiveAvgPool2d((1, 1)) self.fc1 = nn.Linear(128, 84) self.fc2 = nn.Linear(84, num_classes)
[docs] def forward(self, x): x = self.relu(self.bn1(self.conv1(x))) x = self.relu(self.bn2(self.conv2(x))) x = self.avgpool2d(x) x = x.view(x.size(0), -1) x = self.relu(self.fc1(x)) x = self.fc2(x) return x
[docs]class SNetMNIST(nn.Module): """ Small custom convolutional mnist model""" def __init__(self, num_classes: int = 10): super().__init__() self.conv1 = nn.Conv2d(1, 16, 5, stride=2) self.bn1 = nn.BatchNorm2d(16) self.conv2 = nn.Conv2d(16, 32, 5, stride=2) self.bn2 = nn.BatchNorm2d(32) self.relu = nn.ReLU() self.avgpool2d = nn.AdaptiveAvgPool2d((1, 1)) self.fc1 = nn.Linear(32, num_classes)
[docs] def forward(self, x): if len(x.size()) == 3: x = x.unsqueeze(1) x = self.relu(self.bn1(self.conv1(x))) x = self.relu(self.bn2(self.conv2(x))) x = self.avgpool2d(x) x = x.view(x.size(0), -1) x = self.fc1(x) return x