Source code for gaggle.operators.mutation.base_mutations.uniform_mutation

import torch

from gaggle.population.base_individuals.nn_individual import Individual
from gaggle.operators.mutation.mutation import Mutation
from gaggle.arguments.ga_args import GAArgs


[docs]class UniformMutation(Mutation): r"""For real valued chromosomes Adds noise from a Uniform distribution within the range specified by: ga_args.uniform_mutation_min_val and ga_args.uniform_mutation_max_val Noise is only added to each gene with probability specified by ga_args.mutation_chance """ def __init__(self, ga_args: GAArgs = None): super(UniformMutation, self).__init__(ga_args) self.uniform_mutation_min_val = self.ga_args.uniform_mutation_min_val self.uniform_mutation_max_val = self.ga_args.uniform_mutation_max_val
[docs] def mutate_individual(self, individual: Individual) -> Individual: genome = individual.get_gene_pool() num_chromosomes = len(genome.keys()) for i in range(num_chromosomes): # generate the random mask mask = torch.rand(genome[i]["param"].data.size(), dtype=torch.float, device=genome[i]["param"].data.device) < self.ga_args.mutation_chance indices = torch.nonzero(mask, as_tuple=True) scaled_mutation = (torch.rand(size=genome[i]["param"].data[indices].size(), device=genome[i]["param"].data.device) * (self.uniform_mutation_max_val - self.uniform_mutation_min_val)) - self.uniform_mutation_min_val genome[i]["param"].data[indices] += scaled_mutation return individual