Base_datasets

CIFAR10

class gaggle.problem.dataset.base_datasets.cifar10.CIFAR10(problem_args: ProblemArgs, train: bool = True, sys_args: SysArgs = None)[source]

Bases: Dataset

CIFAR10 dataset. Learning Multiple Layers of Features from Tiny Images, Alex Krizhevsky, 2009.

get_data_and_targets()[source]

Gets the data and the targets for the current dataset stored in the self.data object. The self.data object should have .data and .targets attributes to be returned.

Returns:

A tuple containing (data, targets) or (None, None) if the dataset is not initialized.

MNIST

class gaggle.problem.dataset.base_datasets.mnist.MNIST(problem_args: ProblemArgs = None, train: bool = True, sys_args: SysArgs = None)[source]

Bases: Dataset

MNIST dataset. Deng, L. (2012). The mnist database of handwritten digit images for machine learning research. IEEE Signal Processing Magazine, 29(6), 141–142.

get_data_and_targets()[source]

Gets the data and the targets for the current dataset stored in the self.data object. The self.data object should have .data and .targets attributes to be returned.

Returns:

A tuple containing (data, targets) or (None, None) if the dataset is not initialized.